~ ~BREAKDOWN SHEET

ENTRANCE SCENE [E—

The vine like geometry in the entrance scene is created and animated o . —
with a MEL script | wrote. The script bakes out particle data into *.txt’ files S
which consist of the world position vectors of every particle during their S ——— el
lifespan. Afterwards, these baked out transformation data is used to create SO T
curves in the scene. NurbsCircles will be attached to the bases of each Fle s et

created curve and they will be aimed to the appropriate direction using
constraints. And finally, nurbs vine geometry will be created by extruding
the circles along curves.

‘bakeCyclelnterval’ option is for exporting particle data within the de-
clared frame cycle from this slider. A higher frame cycle can be used for
baking out heavy particle simulations for a faster performance. A low frame
cycle would be more accurate but the process will be slower.
‘'minCV_count’ slider is a useful option for getting rid of undesired short curves that will be created by
using short aged particles’ data. Any curve that has a lower CV count than this value will not be cre-
ated. Additionally. the 'base & tip scale’ and the sections of the nurbs vine geometry can be specified
from the interface.

The script also has the ability to animate the vines. The script will utilise a vine growth animation au-
tomatically where a vine will start growing from the base of a curve and stop at the tip of it. Timing of
the animation like growth duration. start/end frame or random seeding can be controlled from the GUI.

In this project. | used custom RenderMan shaders | wrote in RSL for the final render by assigning a
custom noise displacement and a rim surface shader to the vine geometry. Finally | used After Effetcs
just for color corrections and glow effects.

curve creation geometry creation + animation custom RMan Shaders applied
- : — -

Work Done: Software used:
Animation, Scripting. Shader Writing. Rendering Maya/RenderMan, Adobe After Effects

ICICLE MAN

In the scene, the icicles coming out of the refrigerator are formed with a particle simulation. In the sim-
ulation, | have 4 different particle emitters as colored above and 8 particle nodes within. The face is also
added to the animation as a mesh, not as particles.

MERMET ERER

~ ~BREAKDOWN SHEET

For rendering this simulation as a whole blobby object, all data from these seperate particle nodes and
the mesh face should be merged into a single file. To do this. | used a custom MEL script | wrote.

| called the script ‘BAKER' as shown on the left. This script can export fransforma-
tion data of vertices and particles into external "’ files which will be used to create
RenderMan ".rib’ files as curves and blobbies. The script can handle multiple selec-
tions of any type at once and bakes out frame padded data files within the declared
frame range.

In this case. | used the script to bake out data for 4 different particle emitters and 1
mesh object. To bake out data for particle nodes, | turned on the option box for using
the particle’s RadiusPP attribute as scale values for each blobby. So. attaching
‘Spheres’ to particles in the Maya scene will be an accurate reference as they will
become a same size blobby when rendered.

For the face mesh, position data of each vertex are baked out and random scale
values are assigned where it's max-min range can be declared from the interface of
the script.

Now. even though | have all the data baked-out as RenderMan
blobby ".rib’ files, they are baked out as 5 seperate sequences. :
They have to be merged into one “.rib’ file for being able to render it e s

"o o . lwrolo Py
To do this, | wrote a Python script as shown on the right which _ :

r-—-n-l-r-_\-\lh-muu-h-_l_-\.ul-- n-n_:t-nl-nm-t ..h.'"' I#_l
uses the Tkinter module for the GUI. The script is basically a text RS AL @

Brwryn e Bkl [o k] Pop it

v PRAR BESWRD Grmage w1+ <

handler which can merge multiple blobby “.rib” files into a single B TS SN B o e et
“rib’ file. The script has the ability to merge files for each frame - o omenet e '
within sequences or add a single ".rib’ file into a whole sequence.

After the final blobby ".rib’ files are created they are ready to be sourced and rendered in Maya.

The footage for this project was shot by a non-professional DVcam. So. | decided to use more tracking
points for matchmoving as the quality of the footage would be limited. The tracking points are actually
ducktapes sticked on the refrigerator as plus signs which are also carefully measured in terms of distance
in between them. The track points are deleted for post-production by using the clone tool in Nuke.

The footage also had a flickering problem as | shot this footage under florescent light. The flickering
issue was also fixed by using the DeFlicker plug-in in Nuke. A snapshot from the original footage is
shown below on the left and the post-processed version on the right.

An important characteristic of ice material is refraction. However, it is very time-consuming for render-
ers. So, | decided to use a fake refraction technique to avoid long lasting renders. | wrote a custom Ren-
derMan shader which basically paints the object to red, green and blue based on the normal angle of the
geometry. Then, this pass was used in Shake in conjunction with the ‘iDistort’ node. The result is shown
in the next page on the right. Nuke has a similar node called ‘iDisplace’ but | decided to use Shake's
'iDistort” just for this effect simply because | thought Shake handles this process better than Nuke.

MERMET ERER

~ ~BREAKDOWN SHEET

custom RenderMan shader

All the other passes were composited in Nuke which
consist of 6 passes.

The beauty pass is rendered by using a custom Ren-
derMan displacement shader | wrote.

The rim pass is also a custom shader written by me
which affects the edges of the geometry in terms of spec-
ularity.

The smoke pass is rendered using Maya Hardware
Render Buffer. It is a particle simulation rendered as Mul-
tipoints, Multi-Pass rendering and Motion Blur is used.

Other 3 passes are IndirectSpecular, Occlusion and
Shadow passes.

Work Done:
Matchmoving. Shader Writing. Scripting. Compositing

B S
"'\1: e
final refraction effect with
Shake’s "iDistort’ node

Software Used:

Maya/RenderMan, Nuke/Shake, Boujou

LIGHT-REACT BLOBBIES

In this project. | wrote a custom RenderMan DSO Shader which can place a blobby on each micro
palygon of the object. The position of the blobbies depend on the intensity value of the light falling on
object’s surface which the DSO shader is applied. The shader works in conjunction with a custom DSO
plug-in | wrote in C language which lets the shader to bake out blobby data to external “.rib’ files. The at-
tributes of the blobbies can be specified from the shader interface. The atributes are listed in next page.

MERMET ERER

#?‘:.

- ~BREAKDOWN SHEET

Shading Rate: Acts like a multiplier for the blobby count on the object. The
shader looks for micro polygons to place blobbies so a higher shading rate will
place less. a lower rate will place more blobbies on the object.

Kd: Determines the diffuse weight of the shader.

Bakename: Specifies the output directory for baking out data.
Scale XY ,Z: Specifies the scale values for each blobby.
Scaleditter: Adds randomness to the scale values of blobbies.

ScaleHSVWeight: Declares blobby scale based on the intensity value of light on
the surface. Blobbies will become smaller where the light is brighter.

ScaleHSVMin: Any blobby whose scale is smaller than this value will become in-
visible to the renderer.

ignoreLightReact: If this optionbox is checked. light's effect on blobby placement will be ignored and
blobbies will be placed as sticked on the surface.

lightReactWeight: Acts as a multiplier to light's intensity falling on surface.

accumulationMode: If this atir is checked on, the shader will keep adding the new data to the previous
frame’s data. So, new blobbies will be placed in addition to the already existent blobbies for each frame.

fastAccumulation: If this atir is checked off. the shader won't place a blobby to a position where another
blobby was placed there before at the previous frames. So, it will be an heavy and time-consuming pro-
cess not to use fast accumulation as it checks for the position vector of each blobby if it exists at the pre-
vious frames or not.

accumPath1,2,3: Specifies the output directories for the files which will be used as references for baking
out blobby data if the accumulationMode is on.

The DSO shader picks up the '(V)alue' from object’s surface by converting RGB data to HSV which
provides great flexibility for the techniques to animate with light. Any object passing in front of the light
leaving a shadow on objects surface, any color or transparency maps applied to objects or lights will
affect the animation in limitless creative ways. Another characteristic of the shader is that the blobbies
will follow the light's position and they will be pulled through to the light source in terms of the normal
angle of the light reperesented as (L) in RenderMan.

In this case. | assigned a noise texture to the light's intensity
map for adding variation. A fork is also passing in between the
light and the object. where it's shadow falls on the surface.
After animating the light's position, all | got to do was to apply
my custom DSO Shader to the object and render. As a result, |
had blobbies reacting to the light’s intensity and position. How-
ever, to use this shader efficiently, certain steps must be taken
into account which forced me to write my own custom MEL
scripts for building up a pipeline.

Most of the time. the lights that will be used to create the DSO light animation and the lights that will
actually light the scene would be different. So. they should be classified for being able to turn on/off when
appropriate. Furthermore, the scene should be rendered first by assigning the DSO shader to the object
for baking out the blobby data. Then. the scene should be rendered again this time with the desired sur-
face shader assigned to the object where the blobby data will be sourced.

MERMET ERER

~ ~BREAKDOWN SHEET

So. the following steps should be followed to render light-react blobbies.
1. Apply the DSO shader to the object.

To source the blobby "rib’ files, | wrote

<. Turman the LSO lights. custom RenderMan Studio(RMS) scripts con-
3. Tumoff the scane lights. sisting of two MEL scripts and a ".rman’

4. Render to bake out blobby data. script for being able to render pre-baked *.rib’
5. Source the blobby data to the object. ———— 10 \vhen assigned to an object. The Ul wil
6. Apply desired shader to the blobby sourced object. appear in the Attr Editor of the object.

7. Turn on the scene lights.

8. Turn off the DSO lights. | Bt —

9. Render again for the final look of the blobbies. T e

Obviously. doing all these steps manually would be an hassle. So. | wrote | e aemre ﬂl
the ‘dsoRenderer’ MEL script shown on the right which does all these steps e l.

at once just by setting a few parameters and pressing the ‘batch_render’ T i
button. E— T

You can set the search path for the renderer to see the DSO plug-in. e
import the DSO shader. declare the surface shader, classify dso/scene —
lights, render a test frame and batchrender all from the interface of the script. ““m“:‘:"':'l'l"l':?::
Also parameters like frame range, workspace directory and the properties of i e —
the final image can be declared from the interface. st R

Anocther feature of the script is the ability to bake out blobby data files with | — s e

frame padding. In this option, just the blobby data files wil be baked out and T
no images will be rendered. ! === |

e : To be able to render images by sourcing these frame padded files,
= -1 I'wrote a MEL script called ‘renderer’ on the bottom right. This script
s i wmmms =) || will work in conjunction with the RMS scripts explained above and in-
i i sy S == crement the frame pad of the sourced ".rib’ file under the ‘ReadAr-
s chive’ attribute one by one for each frame.

The matchmoving for this footage was made using Boujou. The
original footage has trackable plus shaped tapes sticked on the pan
which are cloned later in Nuke for the final image.

The blobbies shown on the right are rendered by turning on the
‘ignoreLightReact’ option from the DSO shader at these frames
while baking out blobby data. In the Maya scene, there is just a cyl-
inderical shape moving up on Y axis and because that the lights
didn't affect the blobbies as a result of the ‘ignoreLightReact’ option
the blobbies sticked on the surface within these frames.

The final image was rendered using RenderMan by sourcing the
blobby ".rib" files with the aid of my scripts. A custom displacement
RenderMan shader and a reflective Blinn shader was used on the
blobbies. There are 4 main passes used for compositing in Nuke as
specular, diffuse, reflection and occlusion. The reflection of the blob-
bies on the pan is also rendered as a seperate pass.

Work Done: Matchmoving. Shader Writing, Software Used:
Scripting. Compositing, C Programming Maya/RenderMan. Nuke. Boujou

MERMET ERER

=i

e =

AKDOWN SHEET

SEWER

| thought of this structure as an unusual. huge underground sewer.
The scene consists of 12 pointlights and 4 spotlights. Pointlights are
used for the lighting of the lamps attached to the side wall and qua-
dratic lighting is used in spotlights to enhance the feeling of the huge
size. There is also slight green/yellow variations in the lights color to
give this moody underground feeling. The renderer used for the
beauty pass was Mental Ray.

The fluid simulation is created with RealFlow. | thought of this fluid
simulation as a rush of waste oils into to the sewer. So, | kept the vis-
cosity a little lower somewhere between water and oil and used
brownish colors to give the feeling of waste.

Maya particles are added to the fluid simulation as seperate passes
where the fluid hits the column walls. And the trace left by the fluid on
the side wall is a particle simulation rendered as mental ray blobbies.

| also added another Maya fluid simulation as the fog and applied it
on the top of the scene to emphasize the height of the structure. Itis a
fairly thick fog driven by fluid turbulence and vortex fields. Also, Maya
environment fog is attached to the ceiling lamps to enhance the feel-
ing of a foggy environment.

Work Done: Modeling, Lighting. Shading, Texturing, Software used:
Compositing, Rendering Maya/Mental Ray. Nuke, RealFlow

YULTIGRA

My goal in this project was to integrate a CG character into a real
photograph. | had created this tiger-like creature and | wanted to give
it a feeling of ancient times sculpture mixed with modern technology
look. The skin has subsurface scattering with a backScatter, a bump
and a displacement map applied. Procedural shaders are used mostly
on skin and eyes. It is all rendered in Mental Ray by using the render-
ing in layers method later to be composited in Shake. It consists of 3
main passes as beauty, shadow and occlusion.

Work Done: Shooting. Lighting. Texturing. Software Used:
UV Layout, Shading.Rendering, Modeling, Compositing

AUDI LE-MANS

My goal in this shot was to get the fastest but fairly low quality renders
and composite them using ‘rendering in layers’ method to make it
look high quality realistic. The longest pass was the occlusion pass
which was rendered in 8 seconds per frame. All other at about 30
passes were under 3 seconds per frame. The footage was shot with a
2.0 megapixel Sony HandyCam without any markers put on the scene
and tracked using RealViz.

Work Done: Shooting, Matchmoving, Lighting. Modeling Software Used:
Shading.Rendering. Animation. Compositing Maya/ Maya Software, RealViz. Shake

MERMET ERER

e’ ~BREAKDOWN SHEET

ROLEX WATCH

This Rolex watch was rendered with MentalRay. No other compositing
or image manipulation software is used afterwards. The result has de-
rived from a combination of different lighting techniques as HDR.
Final Gathering. Global lllumination and Caustics that pretty much
covers all lighting in Maya/Mental Ray. | had also improved my photon
mapping techniques in this project but choosed not to use it for the
final look of the render.

Work Done: Software Used:
Modeling. Shading. Texturing, Lighting. Rendering

CGI TWIN

In this shot | created a CG twin of the lock from the reference photo
| shot and integrate the CG version next to it by mimicking the envi-
ronmental characteristics of the photo. ‘Rendering in Layers” method
is used to render seperate passes which are Specular, Diffuse, Re-
flection and Shadow all rendered using Mental Ray. All 4 passes were
composited using Shake.

Work Done: Software Used:
Modeling. Lighting, Shading. Texturing. Rendering, Compositing Maya/Mental Ray, Shake

CYTOKINESIS

My goal in this MEL script was to create a tool for the artist to simulate mas-
sive cell divisions as fast and easy as possible. The script is based on creating
a single cell division at the origin of the scene and moving it to a random posi-
tion within the declared target area which can be controlled from the interface
of the script. One of the main feature of the script is to create ‘'massive cell di-
vision’ where all the cells will start dividing at the specified frame and last for a
specified amount of time. Another main feature is to create 'continuous cell di-
vision’ where the cells will divide one after another in between the specified
amount of time. Other features include creating big amounts of ‘static cells’
and ‘small particles’ within a few clicks, 'easy selection of each type’ and cre-
ating a pre-setup camera with the best rendering options. The shaders used
on the cells are custom RenderMan shaders that | wrote and the final render is
manipulated in After Effects just for color correction and glow effects.

custom
RenderMan |
«] shaders applied

created in
10 - 15 mouse §
clicks

| Work Done: Software used:
Scripting. Shading. Rendering. Compositing Maya. RenderMan. Adobe After Effects

MERMET ERER

	breakdownAll_01
	breakdownAll_02
	breakdownAll_03
	breakdownAll_04
	breakdownAll_05
	breakdownAll_06
	breakdownAll_07

